Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Adicionar filtros








Intervalo de ano
1.
China Journal of Chinese Materia Medica ; (24): 455-464, 2023.
Artigo em Chinês | WPRIM | ID: wpr-970482

RESUMO

This study explores the effect of total flavonoids of Rhododendra simsii(TFR) on middle cerebral artery occlusion(MCAO)-induced cerebral injury in rats and oxygen-glucose deprivation/reoxygenation(OGD/R) injury in PC12 cells and the underlying mechanism. The MCAO method was used to induce focal ischemic cerebral injury in rats. Male SD rats were randomized into sham group, model group, and TFR group. After MCAO, TFR(60 mg·kg~(-1)) was administered for 3 days. The content of tumor necrosis factor-α(TNF-α), interleukin-1(IL-1), and interleukin-6(IL-6) in serum was detected by enzyme-linked immunosorbent assay(ELISA). The pathological changes of brain tissue and cerebral infarction were observed based on hematoxylin and eosin(HE) staining and 2,3,5-triphenyltetrazolium chloride(TTC) staining. RT-qPCR and Western blot were used to detect the mRNA and protein levels of calcium release-activated calcium channel modulator 1(ORAI1), stromal interaction molecule 1(STIM1), stromal intera-ction molecule 2(STIM2), protein kinase B(PKB), and cysteinyl aspartate specific proteinase 3(caspase-3) in brain tissues. The OGD/R method was employed to induce injury in PC12 cells. Cells were randomized into the normal group, model group, gene silencing group, TFR(30 μg·mL~(-1)) group, and TFR(30 μg·mL~(-1))+gene overexpression plasmid group. Intracellular Ca~(2+) concentration and apoptosis rate of PC12 cells were measured by laser scanning confocal microscopy and flow cytometry. The effect of STIM-ORAI-regulated store-operated calcium entry(SOCE) pathway on TFR was explored based on gene silencing and gene overexpression techniques. The results showed that TFR significantly alleviated the histopathological damage of brains in MCAO rats after 3 days of admini-stration, reduced the contents of TNF-α, IL-1, and IL-6 in the serum, down-regulated the expression of ORAI1, STIM1, STIM2, and caspase-3 genes, and up-regulated the expression of PKB gene in brain tissues of MCAO rats. TFR significantly decreased OGD/R induced Ca~(2+) overload and apoptosis in PC12 cells. However, it induced TFR-like effect by ORAI1, STIM1 and STIM2 genes silencing. However, overexpression of these genes significantly blocked the effect of TFR in reducing Ca~(2+) overload and apoptosis in PC12 cells. In summary, in the early stage of focal cerebral ischemia-reperfusion injury and OGD/R-induced injury in PC12 cells TFR attenuates ischemic brain injury by inhibiting the STIM-ORAI-regulated SOCE pathway and reducing Ca~(2+) overload and inflammatory factor expression, and apoptosis.


Assuntos
Animais , Masculino , Ratos , Apoptose , Isquemia Encefálica/metabolismo , Caspase 3 , Interleucina-1 , Interleucina-6 , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Fator de Necrose Tumoral alfa/genética , Flavonoides/farmacologia , Rhododendron/química
2.
Chinese Journal of Pharmacology and Toxicology ; (6): 768-769, 2021.
Artigo em Chinês | WPRIM | ID: wpr-909603

RESUMO

OBJECTIVE To explore the effect of total flavonoids of Rhododendra simsii (TFR) on improving cerebral ischemia/reperfusion injury (CIRI) and its relationship with STIM/Orai-regulated operational Ca2+influx (SOCE) pathway. METHODS Oxygen-glucose deprivation/reoxygenation (OGD/R) PC12 cells were used to simulate CIRI in vitro, and the intracellular Ca2+ concentration and apoptosis rate of PC12 cells were detected by laser confocal microscope and flow cytometry, respectively. The regulation of STIM/Orai on SOCE was analyzed by STIM/Orai gene silencing and STIM/Orai gene overexpression. The CIRI model was established by MCAO in SD rats. The activities of inflammatory cyto?kines IL-1, IL-6 and TNF-αin serum were detected by ELISA. The pathological changes of ischemic brain tissue and the infarction of rat brain tissue were detected by HE staining and TTC staining. The protein and mRNA expression levels of STIM1, STIM2, Orai1, caspase-3 and PKB in brain tissue were detected by Western blotting and RT-qPCR, respectively. RESULTS The results of in vitro experiment showed that the fluorescence intensity of Ca2+ and apoptosis rate in PC12 cells treated with TFR were significantly lower than those in OGD/R group, and this trend was enhanced by SOCE antagonist 2-APB. STIM1/STIM2/Orai1 gene silencing significantly reduced apoptosis and Ca2+overload in OGD/R model, while TFR combined with overexpression of STIM1/STIM2/Orai1 aggravated apoptosis and Ca2+overload. In the in vivo experiment, TFR significantly reduced the brain histopathological damage, infarction of brain tissue, the contents of IL-1, IL-6 and TNF-α in the serum in MCAO rats and down-regulated the expression of STIM1, STIM2, Orai1 and caspase-3 protein and mRNA in the brain tissue, and up-regulated the expression of PKB. The above effects were enhanced by the addition of 2-APB. CONCLUSION The above results indicate that TFR may reduce the contents of inflammatory factors and apoptosis, decrease Ca2+ overload and ameliorate brain injury by inhibiting SOCE pathway mediated by STIM and Orai, suggesting that it has a protective effect against subacute CIRI.

3.
Acta Physiologica Sinica ; (6): 524-533, 2007.
Artigo em Inglês | WPRIM | ID: wpr-258626

RESUMO

The present study investigated the relationship between DNA-dependent protein kinase (DNA-PK) and radiosensitivity of nasopharyngeal carcinoma (NPC) cell lines. The dose-survival relationship for NPC cell lines, CNE1 and CNE2, was analyzed using clonogenic formation assay, the activity of DNA-PK of the two cell lines was measured using the Signa TECT DNA-PK assay kit, and the localization and expression of Kus (a heterodimer) and DNA-PKcs protein in CNE1 and CNE2 before irradiation and 15 min, 1 h, 6 h, 12 h, 24 h after 4 Gy irradiation were analyzed by immunofluorescence, laser scanning confocal microscope (LSCM) and Western blot. The results showed that the surviving fraction of CNE1 was higher than that of CNE2 at each dose. The DNA-PK activity of CNE1 was also significantly higher than that of CNE2 before and after irradiation (P<0.05), while the expression of total Ku70/Ku80 in CNE1 and CNE2 had no significant difference. Increasing translocation of Ku70 and Ku80 from the cytoplasm to the nuclei in the two cell lines was observed with increase of irradiation time as detected by Western blot, and the immunofluorescence of the DNA-PK complex subunits showed greater nuclear translocation in CNE1 than CNE2 after irradiation. The results suggest that the relatively higher radio-resistance of CNE1 correlates with the higher activity of DNA-PK as compared to that of more radiosensitive CNE2 (or lower radio-resistance) before and after irradiation. Thus, DNA-PK activity may be a useful predictor of radiosensitivity of NPC.


Assuntos
Humanos , Carcinoma , Linhagem Celular Tumoral , Efeitos da Radiação , Proteína Quinase Ativada por DNA , Metabolismo , Neoplasias Nasofaríngeas , Tolerância a Radiação
4.
Chinese Journal of Oncology ; (12): 342-344, 2006.
Artigo em Chinês | WPRIM | ID: wpr-236970

RESUMO

<p><b>OBJECTIVE</b>To investigate the relationship between DNA-dependent protein kinase (DNA-PK) activity and anti-cancer drug sensitivity in human glioma tissues.</p><p><b>METHODS</b>Human glioma specimens were primarily cultured and its sensitivity to several anti-cancer drugs were evaluated by MTT assay. Nuclear protein was extracted from the glioma sample of the same patient and its DNA-PK activity was determined by a biotinylated DNA-PK assay with p53-derived peptide as a specific substrate.</p><p><b>RESULTS</b>DNA-PK activity varied widely among these glioma samples. Of all 36 samples, 16 showed higher DNA-PK activity (relative activity > or = 0.40) and 20 samples with lower DNA-PK activity (relative activity < 0.40). The gliomas sensitive to DDP and VCR as evaluated by inhibition rate (IR > or = 50%) under plasma peak concentration (PPC) showed lower DNA-PK activity than the resistant ones (IR < 50%) (t = -3.445, P < 0.01). Furthermore, the gliomas with higher DNA-PK activity showed lower inhibition rate (IR < 50%) than those with lower DNA-PK activity ones (t = -2.145, P < 0.05).</p><p><b>CONCLUSION</b>DNA-PK activity is significantly associated with anti-cancer drug sensitivity to DDP and VCR in human gliomas. DNA-PK activity could be used as a new biomarker for the chemotherapy sensitivity of human gliomas.</p>


Assuntos
Humanos , Antineoplásicos , Farmacologia , Antineoplásicos Fitogênicos , Farmacologia , Cisplatino , Farmacologia , Proteína Quinase Ativada por DNA , Metabolismo , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Glioma , Patologia , Proteínas Nucleares , Metabolismo , Vincristina , Farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA